Converting to “Goto C”

Pseudocode Goto C
X =0
while (x < 6)
print(x)
X =X+1

if (i==j||i==k)

i=i+1

else
j=Jj-1

j=i+k

n =1

fact = 6

for(i = 1; i <= fact; i++)
n=nt%i

return n

Bonus!

int binary_search(int N)
{
int found = 0; int min=0; int max=N-1; int index=-1;
while (!found){
if (min > max)
break;
else {
index = floor((min+max)/2);
if (key == A[index])
found = 1;
else if (key < A[index])
max = index - 1;
else
min = index + 1;
}
}
if(found == 1)
return index;
else
return -1;

Linux Cheat Sheet

1s: list everything in your current directory
cd: change your directory (default to ~, your home)
cd path: change to a path (ex. cd Documents/myStuff)
cd .. :change to directory before your current directory
cd - :undolastcd
(You can combine: cd ../../Documents/myStuff, if you were in
Pictures/myStuff)
pwd: print working directory (where am 1?)
mkdir dir: create a directory/folder
rm: remove
rm file: remove file file
rm -r dir:remove directory dir
more file: output file to the screen
vi file: open file in the text editor vi (vi commands below)
:I, :i:enterinsert mode
esc: exit a mode
Line # G:jump to a line number
gg: jump to the beginning of the file
/thing: search for phrase thing in file, use n to jump to the next occurance
:wq: save and quit
:q: quit
:q!: force quit
./ex: run executable ex
./ex < stuff.txt: run executable ex and take input from file stuff.txt
./ex > stuff.txt: run executable ex and output to file stuff.txt

* What’s hex? | don’t remember!
e Hex, or hexadecimal, is the base-16 number system. There are 6 numbers after 9
represented by A, B, C, D, E and F before 10. To indicate that a number is in hex, we
preface the number with Ox. Some examples:

o 10=0xA

o 16=0x10
o 24=0x18
o 200 =0xC8

e If you need to convert back and forth, you can use
http://www.calculator.net/hex-calculator.html

** Dereference? What’s that mean?

e Dereferencing is the act of looking at what is at an address. Say you have register
$eax, but when you print it, you get a weird number like 4198116, even though you know
that something important is supposed to be stored there. It’'s possible that eax is storing
an address, meaning that its value is actually just telling you (and the computer) where
to look for what you actually want. There are two ways to get at the number you want:

o x/s $eax: Will print whatever is at the address held by eax. This is the easiest
way!!

o print *@x400ee4: 0x400ee4 is the number 4198116 in hex, and is how your
computer stores addresses. The asterisk tells print that you want to look at this
address for your value.

http://www.calculator.net/hex-calculator.html

Goto C Cheat Sheet

Regular C Goto C
if (Test) if (!Test) goto false;
then-statement; then-statement;
else goto done;
else-statement; false:
else-statement;
done:
while (Test) loop:
Body if (!Test) goto done;
Body
goto loop
done:
for (Init; Test; Update) Init;
Body loop: if (!Test) goto done;
Body
Update;
goto loop;
done:
do loop:
Body Body
while (Test); if (Test)
goto loop

Negating an expression: (test® ltest)

o ==& 1= (equals @ not equal to)

e >&<= (greater than® less than or equal to)

o <& >= (less than< greater than or equal to)

e 8& e || (and®or)

Examples:

e !(x < 10) — (x >= 10)
o !(x !I=10) — (x == 10)

! & [blank] (get rid of “not”)

o I((x >2) & (x < 20)) — ((x <= 2) || (x >= 20))

